A World of Proof
Discover the power of fibres

everStick® Family
from GC

Study compilation

March 2020
Discover everStick®
and the world of fibre reinforcement

everStick glass fibre reinforcements have been developed to provide strong solutions for minimally invasive dentistry. Researchers all around the world are investigating and documenting the clinical and laboratory evidence of their effectiveness.

The volume and extent of supportive independent research on everStick fibre reinforcements, as summarised here, clearly emphasises the global significance of these remarkable products.
Contents

Publications on key features 5

Mechanical properties and load bearing capacity 5
Bonding performance of everStick fibres 7
Plaque accumulation and bacterial adhesion of everStick fibres 8

Publications per indication 9

everStick®C&B 9
 Clinical performance of everStickC&B 9
 Fracture resistance of everStickC&B reinforced restorations 11

everStick®POST 11
 Clinical performance of everStickPOST 11

everStick®PERIO 16
 Clinical performance of everStickPERIO 16

everStick®NET 17
 Fracture behaviour of everStickNET reinforced restorations 17
 Marginal adaptation of everStickNET reinforced restorations 18

everStick®ORTHO 20
 Clinical performance of everStickORTHO retainers 20
 In vitro comparison between everStickORTHO and stainless steel orthodontic retainers 21

Technique guides 22
IPN - The heart of everStick® fibres

Proper bonding between the fibres and composite is the key factor for a successful treatment.

Only everStick products have a unique, patented interpenetrating polymer network structure (IPN). The IPN technology is based on the ability of the polymer matrix to partially dissolve in the resin used for bonding.

Clinically this leads to superior bonding, enabling reliable surface retained applications and perfect handling properties. Because of this IPN structure, surfaces can be reactivated even after the final polymerisation. Reactivation is crucial for superior bonding when:

- Laboratory-manufactured restorations are cemented to teeth
- Fibre reinforced composite (FRC) restorations are remodelled or repaired

The IPN structure makes the everStick products fundamentally different from any other fibre or composite materials available on the market.
Minimally invasive and patient-friendly fibre reinforcement solutions for daily dentistry

The advantages of everStick

• **Minimally invasive** and reversible solutions, leaving all options open for future treatments
• **Extensive clinical proof** & in vitro research available
• **Superior mechanical properties**
• **Unique patented bonding** with IPN (interpenetrating polymer network) technology
• **Economical alternative** to indirect treatments

Indications

• Fibre-reinforced composite **bridges**
• Advanced root canal **post & core** structures
• **Splints** of mobile and traumatised teeth
• **Orthodontic** retainers

Creating a direct fibre-reinforced bridge with everStickC&B
Courtesy of Prof. Marleen Peumans, Belgium

Custom-made post with everStickPOST
Courtesy of Dr. Anja Baraba, Croatia

Splinting teeth with everStickPERIO
Courtesy of Dr. Javier Tapia Guadix, Spain

Splinting traumatic teeth with everStickNET
Courtesy of Dr. Rudolf Novotny, Slovakia

Orthodontic retainer with everStickORTHO
Courtesy of Dr. Lucile Dahan, France
Publications on key features

Mechanical properties and load bearing capacity

Based on the literature, glass fibre reinforcements (everStick) have been used to reinforce resin matrices and their strength and reinforcing effect are among the highest to be found. Several authors have reported that everStick fibre reinforcements have excellent mechanical properties with a relatively high modulus of elasticity and load bearing capacity, even after long-term water immersion.

 Almaroof A et al.

2. Comparative evaluation between glass and polyethylene fiber reinforced composites: A review of the current literature.
 Mangoush E et al.

3. Effects of nanofillers on mechanical properties of fiber-reinforced composites polymerized with light-curing and additional postcuring.
 Scribante A et al.

 Sfondrini MF et al.

5. Effect of water temperature on cyclic fatigue properties of glass-fiber-reinforced hybrid composite resin and its fracture pattern after flexural testing.
 Kuroda S et al.

 Pastila P et al.

7. Effect of 10 years of in vitro aging on the flexural properties of fiber-reinforced resin composites.
 Vallittu PK.

8. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure.
 Garoushi S et al.

 Garoushi SK et al.

 Garoushi SK et al.

 Bouillaguet S et al.

12. Load bearing capacity of fibre-reinforced and particulate filler composite resin combination.
 Garoushi S et al.

 Dyer SR et al.

 Dyer SR et al.

 Lassila LV et al.

16. Static strength of molar region direct technique glass fibre-reinforced composite fixed partial dentures.
 Dyer SR et al.

17. The span length and cross-sectional design affect values of strength.
 Alander P et al.
18. Flexural fatigue of denture base polymer with fiber-reinforced composite reinforcement.
Narva KK et al.

19. The degree of conversion of fiber-reinforced composites polymerized using different light-curing sources.
Uctasli S et al.

20. The static strength and modulus of fiber reinforced denture base polymer.
Narva KK et al.

21. Effect of fiber position and orientation on fracture load of fiber-reinforced composite.
Dyer SR et al.

Hamza TA et al.

23. Flexural properties of fiber reinforced root canal posts.
Lassila LV et al.

24. The effect of fiber position and polymerization condition on the flexural properties of fiber-reinforced composite.
Lassila LV and Vallittu PK.

25. Mechanical properties of preimpregnated glass fiber reinforced composite resins.
Xie QF et al.

26. Acoustic emission analysis of fiber-reinforced composite in flexural testing.
Alander P et al.

Lassila LV et al.
Bonding performance of everStick fibres

everStick fibres are pre-impregnated with a unique light-polymerisable dimethacrylate resin system. It contains linear polymer phases that form a semi-IPN polymer network after being polymerised. That way, it offers a better bonding site for composite resin and tooth structure.

1. Influence of Monomer Systems on the Bond Strength Between Resin Composites and Polymerized Fiber-Reinforced Composite upon Aging.
 Khan AA et al.

2. The effect of ethanol on surface of semi-interpenetrating polymer network (IPN) polymer matrix of glass-fibre reinforced composite.
 Basavarajappa S et al.

3. Influence of primers on the properties of the adhesive interface between resin composite luting cement and fiber-reinforced composite.
 Khan AA, Al-Kheraif AA, Mohamed BA, Perea-Lowery L, Säilynoja E, Vallittu PK.

4. Immediate Repair Bond Strength of Fiber-reinforced Composite after Saliva or Water Contamination.
 Bjelic-Donova J, Flett A, Lassila LVJ, Vallittu PK.

5. Polymer matrix of fiber-reinforced composites: Changes in the semi-interpenetrating polymer network during the shelf life.
 Khan AA et al.

 Frese C et al.

7. Shear bond strength to enamel and flexural strength of different fiber-reinforced composites.
 Juloski J et al.

8. The effect of surface roughness on repair bond strength of light-curing composite resin to polymer composite substrate.
 Kallio TT et al.

9. Microtensile bond strength of fiber-reinforced composite with semi-interpenetrating polymer matrix to dentin using various bonding systems.
 Tezvergil-Mutluay A et al.

10. The bond strength of particulate-filler composite to differently oriented fiber-reinforced composite substrate.
 Lassila LV et al.

11. The shear bond strength of bidirectional and random-oriented fibre-reinforced composite to tooth structure.
 Tezvergil A et al.

12. Bond strength of glass fiber reinforced composite and base metal frameworks used in resin-bonded fixed partial dentures.
 Sadeghi M.

 Keski-Nikkola MS et al.

 Tezvergil A et al.

 Tezvergil A et al.

16. The semi-interpenetrating polymer network matrix of fiber-reinforced composite and its effect on the surface adhesive properties.
 Lastumäki TM et al.

17. Bond strength of fibre-reinforced composite to the metal surface.
 Vallittu PK and Kurunmäki H.

18. The bond strength of light-curing composite resin to finally polymerized and aged glass fiber-reinforced composite substrate.
 Lastumäki TM et al.
Plaque accumulation and bacterial adhesion of everStick fibres

In vivo and in vitro studies showed that glass fibre-reinforced composites (everStick) and conventional particulate filler composite have a similar plaque accumulation and bacterial adhesion properties.

Publications per indication

everStick®C&B
Clinical performance of everStickC&B

Extensive clinical studies and reports are available that demonstrate the benefits of using everStickC&B fibres. The findings of these studies indicate that restorations reinforced with everStickC&B are a valid alternative for replacing missing single anterior and posterior teeth. Such restorations appear to offer a reliable, minimally invasive, aesthetic and cost-efficient way to restore missing single teeth with predictable clinical performance and patient-oriented outcomes. Moreover, the versatility in fabrication techniques, whether direct or indirect, varying retention options through surface, inlay or hybrid retainers, and their capacity to be easily repaired in situ, are all considered major advantages and support the use of restorations reinforced with everStickC&B.

2. Fiber-reinforced composite fixed dental prostheses: A 4-year prospective clinical trial evaluating survival, quality, and effects on surrounding periodontal tissues.
 Wolff D et al.

3. Fiber-reinforced composites in fixed prosthodontics-Quo vadis?
 Vallittu PK et al.

 Singh S, Shetty R.

5. Four-Year Clinical Evaluation of GFRC-RBFPDs as Periodontal Splints to Replace Lost Anterior Teeth.
 Li J et al.

 Frese C et al.

9. A two-step technique to fabricate a glass fiber-reinforced composite interim removable partial denture: Case report.
 Ali M. El-Sheikh, Ayman Ellakwa
 International Journal of Medical and Dental Case Reports 2014.

10. Single visit replacement of maxillary canine using fiber-reinforced composite resin.
 Garoushi S et al.

 Garoushi S et al.

 Ballo A, Vallittu P.

 Wolff D et al.

 Izgi AD et al.

Fracture resistance of everStickC&B reinforced restorations

Several authors have reported scientific evidences supporting the use of everStickC&B reinforced restorations. They attributed the superior mechanical performance to the fibre structure and good connection with the resin matrix. The optimal adhesion between everStickC&B and resin is a key factor in load transfer and clinical success of all fibre-reinforced applications.

1. Fatigue resistance of metal-free cantilever bridges supported by labial laminate veneers.
 Türkaslan S et al.

2. Influence of additional reinforcement of fixed long-term temporary restorations on fracture load.
 Debye K et al.

3. Comparison of Load-Bearing Capacities of 3-Unit Fiber-Reinforced Composite Adhesive Bridges with Different Framework Designs.
 Tacir IH et al.

4. Ex vivo fracture resistance of teeth restored with glass and fiber reinforced composite resin.
 Khan SIR et al.

 Cekic-Nagas I et al.

6. Fracture behavior of pontics of fiber-reinforced composite fixed dental prostheses.
 Perea L et al.

7. Fiber-reinforced composite fixed dental prostheses with various pontics.
 Perea L et al.

 HJ Visser et al.
 SADJ June 2014, Vol 69 no 5 p202 - p207

9. Load-bearing capacity of fiber reinforced fixed composite bridges.
 Göncü Başaran E et al.

10. Effects of different cavity designs on fracture load of fiber-reinforced adhesive fixed dental prostheses in the anterior region.
 Aktas G et al.

11. Shear bond strength to enamel and flexural strength of different fiber-reinforced composites.
 Juloski J et al.

12. Analysis of the interdiffusion of resin monomers into pre-polymerized fiber-reinforced composites.
 Wolff D et al.

13. Fiber reinforcement of two temporary composite bridge materials Effect upon flexural properties.
 AL Twal E.Q.H, Chadwick R.G.

 Ozcan M et al.

15. Static and dynamic failure load of fiber-reinforced composite and particulate filler composite cantilever resin-bonded fixed dental prostheses.
 Keulemans F et al.

 Keulemans F et al.
17. The influence of framework design on the load-bearing capacity of laboratory-made inlay-retained fibre-reinforced composite fixed dental prostheses.
Keulemans F et al.

18. Fracture strength of direct surface-retained fixed partial dentures: effect of fiber reinforcement versus the use of particulate filler composites only.
Kumbuloglu O et al.

Ozcan M, Kumbuloglu O, User A.

20. Comparison of load-bearing capacity of direct resin-bonded fiber-reinforced composite FPDs with four framework designs.
Xie Q et al.

Ozcan M et al.
According to the available research, everStickPOST has proved to be successful clinically due to the mono-block effect formed by the luting agent, the post system and the core material and due to the bonding to dentin. everStickPOST provides a novel way of fabricating cost-effective, aesthetic and less time-consuming individually formed posts to restore endodontically treated teeth.

Marginal adaptation and bonding strength of everStickPOST to root canal dentin

Laboratory studies showed that individually formed fibre posts (everStickPOST) have higher dentin bond strength values and less microleakage in comparison to prefabricated fibre posts. Thanks to the IPN technology, everStickPOST bonds efficiently to adhesive cements and direct composite cores/restorations, enabling reliable surface-retained applications. Moreover, with everStickPOST the amount of luting cement can be minimised, thereby reducing the residual shrinkage of the cement and resulting in a better adaptation of the fibre post.

1. Transmission of light through fiber-reinforced composite posts.
 Bell-Rönnlöf AL et al.

2. Bond Strength of Individually Formed and Prefabricated Fiber-reinforced Composite Posts.
 Parčina Amižič I et al.

3. Effect of Fiber Post-Resin Matrix Composition on Bond Strength of Post-Cement Interface.
 Alnaqbi IOM et al.

 Amižič IP et al.

5. Evaluation of Microleakage Between Different Post and Core Systems Under Gradual Loading: an In-Vitro Study.
 Salim NA et al.

 Parlar Oz O et al.

7. The Effect of Self-adhesive and Self-etching Resin Cements on the Bond Strength of Nonmetallic Posts in Different Root Thirds.
 da Silva MB et al.

 San T, Ozyesil AG.

 Makarewicz D et al.

10. Influence of cement thickness on the bond strength of tooth-colored posts to root dentin after thermal cycling.
 Egilmez F et al.

11. One year effect of chlorhexidine on bonding of fibre-reinforced composite root canal post to dentine.
 Lindblad RM et al.

12. Effect of plunger diameter on the push-out bond values of different root filling materials.
 Nagas E et al.

13. Does the surface treatment affect the bond strength of various fibre-post systems to resin-core materials?
 Cekic-Nagas I et al.

14. Effect of chlorhexidine on initial adhesion of fiber-reinforced post to root canal.
 Lindblad RM et al.

 Zaitter S et al.

16. Effects of pretreatment and thermocycling on bond strength of resin core materials to various fiber-reinforced composite posts.
 Bitter K et al.

17. Microtensile bond strength of resin-post interfaces created with interpenetrating polymer network posts or cross-linked posts.
 Mannocci F et al.

 Abo El-Ela OA et al.
19. Is a “flexible” glass fiber-bundle dowel system as retentive as a “rigid” quartz fiber dowel system?
Al-Tayyan MH et al.

Le Bell-Rönnlöf AM et al.

21. Effect of silanization on bond strengths of fiber posts to various resin cements.
Bitter K et al.

22. Penetration of bonding resins into fibre-reinforced composite posts: a confocal microscopic study.
Mannocci F et al.

Le Bell AM et al.

Le Bell AM et al.
Many studies showed a significant increase in the fracture resistance of restored teeth when the individually formed fibre posts were adapted closely to the canal walls. When using everStickPOST, it is possible to fill large and irregular root canals more efficiently than with a single, prefabricated centrally positioned post.

 Doshi P, Kanaparthy A, Kanaparthy R, Parikh DS.

2. Fracture resistance and marginal gap formation of post-core restorations: influence of different fiber reinforced composites.
 Fráter M et al.

 Bhagat A et al.

 Fráter M et al.

 Fráter M et al.

 Fráter M et al.

7. Fracture resistance of endodontically restored, weakened incisors.
 Cauwels RG et al.

 Cauwels RG et al.

 Le Bell-Rönnelid AM et al.

10. High volume individual fibre post versus low volume fibre post: the fracture load of the restored tooth.
 Hatta M et al.

11. Fracture strength of endodontically-treated teeth restored with post and cores and composite cores only.
 Ozcan M, Valandro LF.

12. Fracture resistance and failure modes of endodontically treated human teeth restored with four different post-core systems.
 Yang Z et al.

13. Fatigue Resistance of Resin-Bonded Post–Core–Crown Treated Teeth with Flared Root Canal
 Liu F et al.

 Abo El-Ela OA et al.

15. Direct restoration of severely damaged incisors using short fiber-reinforced composite resin.
 Garoushi S et al.
 J Dent. 2007 Sep;35(9):731-6.

 Wiskott HW et al.

 Fokkinga WA et al.

18. Flexural properties of fiber reinforced root canal posts.
 Lassila LV et al.
Many clinical studies and reports demonstrate the merits of using everStickPERIO splints in stabilising periodontally affected teeth. Patient’s acceptance of the treatment is high and splints are considered durable, comfortable, aesthetic and easy to maintain. In addition, everStickPERIO splints do not hinder the individual and professional oral hygiene.

1. Management of traumatically intruded immature permanent incisor

2. Evaluation of fiber reinforcement composites in restoring lower dentition defect and fixing loose teeth for chronic periodontitis.

3. Evaluation of the fiber-reinforced composite periodontal splint on fixing loose teeth with severe periodontitis.

4. The Use of Fibre Reinforced Composites (Frcs) in Periodontal Splinting & the Natural Tooth Pontic (NTP) in the Management of Advanced Periodontal Disease.

5. Pilot study of unidirectional E-glass fibre-reinforced composite resin splints: up to 4.5-year clinical follow-up.

6. Rehabilitation of advanced periodontal problems by using a combination of a glass fiber-reinforced composite resin bridge and splint.

7. Clinical investigation of the fiber-reinforced composite periodontal splint (FRC) on fixing the aged loosen teeth.
 Zhang Yi, FU Zhi-ying Chinese Journal of Conservative Dentistry,2005-07

8. Effect of occlusal therapy with FRC splint on periodontal parameters in maintenance phase.

9. Evaluation of two kinds of periodontal stabilization splint on fixing the labial loosen teeth

Literature findings support the use of bidirectional fibre reinforcement (everStickNET) to increase the load bearing capacity of restorations. everStickNET has a beneficial effect on the failure mode and thereby on the re-restorability in case of fracture. A number of authors stated that everStickNET is also a suitable material to repair veneers.

 Sáry T et al.

2. Evaluation of the Influence of Various Restoration Techniques on Fracture Resistance of Endodontically Treated Teeth with Different Cavity Wall Thicknesses
 Basaran ET, Gokce Y

3. In vitro fracture resistance of endodontically treated premolar teeth restored with a direct layered fiber-reinforced composite post and core.
 A Forster et al.

4. Fracture strengths of chair-side-generated veneers cemented with glass fibers.
 Turkaslan S et al.

 Fennis WM et al.

6. Effect of fiber-reinforced composites on the failure load and failure mode of composite veneers.
 Turkaslan S et al.

 Goguţă LM et al.
Marginal adaptation of everStickNET reinforced restorations

Combination of everStickNET with flowable composite helps to reduce microleakage in adhesive composite restorations and shows a better marginal adaptability for veneer restorations.

 Jia S et al.

2. Evaluation of gingival microleakage of composite restorations with glass fiber inserts, polyethylene fiber inserts and prepolymerized composite inserts: An in vitro study.
 Kumar P et al.

3. Effect of fiber nets, application techniques and flowable composites on microleakage and the effect of fiber nets on polymerization shrinkage in Class II MOD cavities.
 Ozel E, Soyman M.

4. The effect of fiber placement or flowable resin lining on microleakage in class II adhesive restorations.
 Belli S et al.

Bonding performance of everStickNET

Using everStickNET at the adhesive interface significantly improves the shear bond strength of resin composite to dentin or metal substrates.

1. Shear Bond Strength between Fiber-Reinforced Composite and Veneering Resin Composites with Various Adhesive Resin Systems.
 AlJehani YA et al.

2. Shear bond strength of fibre-reinforced composite nets using two different adhesive systems.
 Sfondrini MF et al.

3. Enhanced degree of monomer conversion of orthodontic adhesives using a glass-fiber layer under the bracket.
 Shinya M et al.

4. Shear bond strength between a polyester-based root canal filling material and a methacrylate-based sealer with an intermediate layer of fiber-reinforced resin-based material.
 Nagas E et al.

5. Effect of fiber-reinforced composite at the interface on bonding of resin core system to dentin.
 Cekic-Nagas I et al.

6. In vitro evaluation of push-out bond strength of direct ceramic inlays to tooth surface with fiber-reinforced composite at the interface.
 Cekic I et al.

7. The effect of c-factor and flowable resin or fiber use at the interface on microtensile bond strength to dentin.
 Belli S et al.

8. Bond strength of resin composite to differently conditioned amalgam.
 Ozcan M et al.

9. Bonding of lithium-disilicate ceramic to enamel and dentin using orthotropic fiber-reinforced composite at the interface.
 Ergun G et al.
Colour stability of everStickNET restorations

Incorporation of everStickNET fibres did not alter the translucency of the composite resins and everStickNET restorations demonstrated clinically acceptable colour change after ageing.

1. Effect of water storage on the translucency of silorane-based and dimethacrylate-based composite resins with fibres.
 Ozakar Ilday N et al.

2. Effect of fibers on the color changes and stability of resin composites after accelerated aging.
 Tuncdemir A, Aykent F.
 Dent Mater J 2012; 31:872-78.
everStick® ORTHO
Clinical performance of everStickORTHO retainers

Clinical studies and reports revealed that the application of everStickORTHO glass fibre reinforcements for orthodontic lingual retention is a practical alternative to conventional retainers used in orthodontic treatment. Authors stated that everStickORTHO is clinically easy to handle and can be precisely adjusted to the dental arch.

1. Clinical Success of Fiber-reinforced Composite Resin as a Space Maintainer.
 Kirzioğlu Z et al.

2. Two-year survival analysis of twisted wire fixed retainer versus spiral wire and fiber-reinforced composite retainers: a preliminary explorative single-blind randomized clinical trial.
 Sobouti F et al.

 Wu HM et al.

 Sfondrini MF et al.

5. Bonded orthodontic retainer and fixed partial denture made with fiber reinforced composite resin.
 Kumbuloglu O et al.

6. Application of fiber-reinforced composite as fixed lingual retainer.
 Liu Y.

 Subramaniam P, et al.

 Kargul B, et al.

 Aydin MY, Kargül B.
In vitro comparison between everStickORTHO and stainless steel orthodontic retainers

Laboratory findings suggest that fibre-reinforced composite retainers with everStickORTHO may be an effective option for orthodontic retention. Hence, everStickORTHO can be considered a viable aesthetic alternative for full-size stainless steel wires. Furthermore, several authors declared that fibre-reinforced composite space maintainers may be a clinically acceptable and expedient alternative to the conventional band-loop appliances.

2. Effect of Long-Term Brushing on Deflection, Maximum Load, and Wear of Stainless Steel Wires and Conventional and Spot Bonded Fiber-Reinforced Composites.

 Alshahrani et al. Polymers and polymer composites 2019;27(2).

4. Comparison of the different retention appliances produced using CAD/CAM and conventional methods and different surface roughening methods.

5. Comparison between fiber-reinforced polymers and stainless steel orthodontic retainers.
 Lucchese A, Manuelli M, Ciuffreda C, Albertini P, Gherlone E, Perillo L.

7. Spot-Bonding and Full-Bonding Techniques for Fiber Reinforced Composite (FRC) and Metallic Retainers.

 Minerva Stomatol. 2015 Dec;64(6):323-33.

9. Covering of fiber-reinforced composite bars by adhesive materials, is it necessary to improve the bond strength of lingual retainers?
 Heravi F, Kerayechian N, Moazzami SM, Shafaee H, Heravi P.

10. Shear bond strength of different retainer wires and bonding adhesives in consideration of the pretreatment process.

 Alavi S, Mamavi T.

 Foek DL, Yetkiner E, Ozcan M.

 Ohtonen J, Valtiittu PK, Lassila LV.

 Brauchli L, Pints S, Steineck M, Lüthy H, Michelhaas A.

15. Development and testing of fiber-reinforced composite space maintainers.
 Kulkarni G, Lau D, Hafezi S.

 Foek DL, Ozcan M, Krebs E, Sandham A.
17. Force levels of fiber-reinforced composites and orthodontic stainless steel wires: a 3-point bending test.
Cacciafesta V, Sfondrini MF, Lena A, Scribante A, Vallittu PK, Lassila LV.

18. Flexural strengths of fiber-reinforced composites polymerized with conventional light-curing and additional postcuring.
Cacciafesta V, Sfondrini MF, Lena A, Scribante A, Vallittu PK, Lassila LV.

Geserick M, Ball J, Wichelhaus A.
everStick®C&B

Anterior Bridge

- Measure the length of fibre needed
- Cut the fibre inside the silicone
- Clean the teeth with pumice and water
- Etch the teeth for 45-60 seconds
- Bond the etched area and light-cure
- Apply a flowable composite; do not light-cure
- Position the fibre on top of the flowable
- Spread the fibre on the surface of the first tooth
- Light-cure while protecting the rest of the fibre
- Bend the centre of the fibre labially to support the pontic, and hold it in position. Do not light-cure.
- Spread the fibre on the surface of the second tooth, while keeping the labial curvature. Light-cure the complete structure.
- Add a transverse fibre occlusally, cover with flowable & light-cure
- Layer the pontic with composite
- Finish and check the occlusion

everStick®POST

- Initial situation
- Prepare the space for the post
- Measure the length of fibre needed
- Choose the size, and cut out the post from the silicone
- Shorten the post to the desired length
- Fit the post inside the root canal
- Taper the post if necessary
- Place the post inside the root canal
- Fill the canal with shorter posts if needed, and condense them laterally
- Use a dual-cure composite luting for the cementation
- Insert the condensed post into the canal
- Light-cure for at least 40 seconds
- Continue the build-up with composite & light-cure
- Final situation

everStick®PERIO

- Initial situation
- Measure the length of fibre needed
- Cut the fibre bundle inside the silicone
- Clean the teeth with pumice and water
- Etch the teeth for 45-60 seconds
- Bond the etched area and light-cure
- Apply a flowable composite; do not light-cure
- Position the fibre on top of the flowable
- Spread the fibre on the surface of the first tooth
- Light-cure while protecting the rest of the fibre
- Proceed in the same way for each tooth
- Intermediate result after light-curing
- Cover the fibre completely with a flowable & light-cure
- Final situation
everStick®NET

Measure the length needed
Cut the fibre net at the desired length
Cut out two or three fibre strips of different widths
Clean the teeth with pumice and water
Etch the teeth for 45-60 seconds
Bond the etched area and light-cure
Apply a flowable composite, do not light-cure!

Remove the fibre net from its protective paper
Position one fibre strip at a time
Light-cure 5-10 seconds per tooth while protecting the rest of the fibre from the light
Apply a thin layer of light-curing resin on the cured strip. Position the second strip on top, and light-cure tooth per tooth.
Repeat the same procedure for the third fibre strip.
Cover the cured fibre net with flowable composite and light-cure for 40 seconds per tooth
Final situation after finishing the fibre splint

everStick®ORTHO

Initial situation
Measure the length of fibre needed
Cut the fibre bundle inside the silicone
Clean the teeth with pumice and water
Etch the teeth for 45-60 seconds
Bond the etched area and light-cure
Apply a flowable composite, do not light-cure!

Position the fibre on top of the flowable
Spread the fibre on the surface of the first tooth
Light-cure while protecting the rest of the fibre
Proceed in the same way for each tooth
Intermediate result after light-curing
Cover the fibre completely with a flowable & light-cure
Final situation
Discover more on Youtube!

https://www.youtube.com/user/GCEuropeProducts/search?query=everStick

Check our App!

Restorative Dentistry Guides

In GC’s Restorative Dentistry Guides, you can find more information regarding the use of everStick products as well as other restorative materials, together with step-by-step procedures and technique tips!